

Design and Control Considerations for High-Performance Series Elastic Actuators

Actuators Workshop IROS 2014 Nicholas Paine, Luis Sentis Human Centered Robotics Lab Univ. of Texas, Austin, USA

Some observations

- Performance Nature outperforms manmade machines (locomoting, dynamic maneuvers, catching, efficiency)
- Versatility A single animal can (usually) outperform the each of the most specialized man-made machines

Fundamental improvements are needed in the physical ability of robots

In this talk...

- 1) We seek to improve performance of robotic actuators for legged robot applications
- 2) Establish a common metric which may be used to compare to other work

A few performance metrics

Metric

Torque/Weight

Power/weight

Efficiency

Arnold

Optimized robot

NASA-JPL ATHELETE

Boston Dynamics Wildcat

Cornell Ranger

High-performance electric SEA design

Prismatic series elastic actuators

Ballscrews excel in power output and efficiency

A **ballscrew** speed reduction and **series elasticity** combine together to define a class of prismatic series elastic actuators

Spring Flamingo (MIT) SEA

Basics of operation for previous SEAs

(3)

(1)

2

(1) Ball screw rotation(2) Ball nut translation(3) Output carriage

Note: large swept volume Is a more compact design possible?

Our design: the UT-SEA

Unique features

Our actuator differs from other prismatic SEAs by: (1) driving the ball nut, (2) piston style ball screw support, (3) springs concentric with drive shaft.

N. PAINE, S. Oh and L. Sentis. "Design and Control Considerations for High-Performance Series Elastic Actuators," *Mechatronics, IEEE/ASME Transactions on*, vol.19, no.3, pp.1080,1091, June 2014.

To-scale comparison

Significantly smaller than previous designs of similar performance

2.2X less mass than Hume SEA

Importance of small actuator size

a) Atlas robot 28 hydraulic actuators

b) Valkyrie robot 25 SEAs

Datasheet performance comparison

Knowing mechanical capability alone is not good enough

Limits of datasheet performance

Knowing mechanical performance alone is not good enough

- 1) It depends on motor manufacturer's "rated values", which are non-standardized metrics
- 2) It does not take into account other system limitations, most notably due to control issues
- Empirical (measured) performance is a more useful metric

High-performance SEA control

Taking control into account – our control approach

- Inner force control loop
 - PD force feedback (shaped to be critically damped)
 - Disturbance observer to improve tracking accuracy and disturbance rejection
- Outer position control loop
 - Inverse dynamics based (assumes a model of the load is known)
 - Feedback achieved through a disturbance observer

SEA force control

a) Series Elastic Actuator (SEA)

c) Torque control diagram

Closed-loop transfer function:

$$P_{c}(s) = \frac{F_{k}(s)}{F_{r}(s)} = \frac{(k\beta k_{d})s + k(1+\beta k_{p})}{m_{k}s^{2} + (b_{eff} + k\beta k_{d})s + k(1+\beta k_{p})}$$

Force control performance

"Open loop" force control

Adding the PD compensator

Adding the DOB (full controller)

Force tracking comparison

Tracking Error Comparison

Ferr/Fdes

Parameter	Value	Units
k_p	0.05	A/N
f_{kd}	100	Hz
ζ_d	0.9	n/a
f_q	40	Hz
β	219	N/A
m_k	360	kg
b_{eff}	2200	Ns/m
k	350000	N/m

N. PAINE, J. Mehling, J. Holley, N. Radford, G. Johnson, C. Fok, and L. Sentis. "Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots," *Journal of Field Robotics*, 2014, **Under revision**.

Position control -> inverse dynamics

Solve for *F* given θ_a

Our high performance position control approach

Control plant reduced to:

$$\frac{\theta_a(s)}{\tau_a(s)} = \frac{1}{s^2 J_a + s B_a}$$

Controlled using inverse dynamics and DOB

Data from high power test

more useful than "datasheet" performance Empirical power-to-weight ratio of 423 W/kg

4.5x improvement over our previous work (UT-SEA version 1) due to mechanical and control improvements

6.41x improvement over empirical Yobotics SEA performance

2.1x improvement over the most power-dense human muscle

N. PAINE, S. Oh and L. Sentis. "Design and Control Considerations for High-Performance Series Elastic Actuators," *Mechatronics, IEEE/ASME Transactions on*, vol.19, no.3, pp.1080,1091, June 2014.

Energy efficiency of high power test

Visualization of CoT efficiency metric

S. Seok; Wang, A; M. Y. Chuah; Otten, D.; Lang, J.; S. Kim, "Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot," *ICRA* pp.3307,3312, 6-10 May 2013

Visualization of power/weight metric

Thank you

References

Pestana, J., et al. "Characterization of emerging actuators for empowering legged robots." (2010).

I. W. Hunter and S. Lafontaine. A comparison of muscle with artificial actuators. In Solid-State Sensor and Actuator Workshop, 5th Technical Digest., IEEE, pages 178{185, June 1992.

Bennet-Clark, H. C. "The energetics of the jump of the locust Schistocerca gregaria." *Journal of Experimental Biology* 63.1 (1975): 53-83.

Josephson, Robert K. "The mechanical power output of a tettigoniid wing muscle during singing and flight." *Journal of experimental biology* 117.1 (1985): 357-368.

Scholz, Melanie N., et al. "Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties." *Proceedings of the Royal Society B: Biological Sciences* 273.1598 (2006): 2177-2184.

Williams, S. B., et al. "Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris)." *Journal of anatomy* 213.4 (2008): 361-372.